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Unit-1 Wave Mechanics 

  
●  Wave Equation : 

 
❏ If electrons have the wave properties then there must be a wave            

equation and a wave function to describe the electron waves just           
as the waves of light, sound and strings are described.  

❏ Let us consider the motion of a string which is held fixed at two              
ends x = 0 and x = a. Upon certain kinds of vibrations a simple               
wave can be produced. 

❏ If the wave travels in the y-direction, mathematically these         
motions can be described by functions of the form 
      y (x,t)  =  f(x) 𝝓(t)        ………………………(1) 

            where f(x) is independent of t and 𝝓(t)  is independent of x. 
       Such motions are called normal modes of vibration. 
❏  The wave equation has the general form : 

  
 
  
           where c is called the wave velocity.  
❏ Substituting for y from, Eq. (1) in Eq. (2) 

 
 
 
where  -𝞈2 is constant. 

❏ Separating x and t we get two differential equations:  
 

 
 
 
 
❏ The solution of equation (4) is given as: 

          𝝓(t)  = A sin 𝞈t + B cos 𝞈t 
where the A and B are constants determined from the boundary            

conditions, and 𝞈 is called the circular frequency which is related to the             
ordinary frequency  
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           𝞈 = 2𝞹𝒱        …………………………..(7) 
❏ Equation (7) may therefore be written as : 

 
 
❏ Putting 𝞴 = c / 𝒱 the solution of equation (8) becomes : 

 
 
 
 
 
 
 
❏ Where A1, A2, C and D are constant. 
❏ Let us consider Eq. (9) and impose the boundary conditions 

         (i)   f(x) = 0  at  x = 0  and (ii) f(x) = 0 at x = a,  
             where a is the length of the string. 
           From the boundary condition (i), D = 0  
          and from the condition (ii) 
 
 
 
 
 
 
 
 
 
 
 
 
 
❏ The normal modes are thus the stationary sine waves given by 
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❏ The complete solution for a normal mode in a stretched string           
therefore from Eqs (1), (6), (7) and (11) is given by : 
 
 
 
 

 
❏ Equation (12) is an expression for the amplitude of waves          

generated during the normal modes of vibration in a stretched          
string. The same equation should represent the amplitude of a de           
Broglie wave associated with a moving particle. We are, primarily          
concerned here, with the time-independent or stationary waves.        
Therefore, the equation for a standing sine wave of wavelength (𝞴)           
is given by : 

 
 

 where 𝜳 is the wave function and C is the amplitude of the wave  
❏ Double differentiation of Eq. (13) with respect to x gives 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
❏ The kinetic energy T of a moving particle of mass m and velocity v              

is given by : 
          T = ½ mv2    =  m2v2/ 2m   …………………………..(15) 
❏ According to the de Broglie, 

 T = h 2/ 2m𝞴2   ………………………………………..(16) 
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❏ Substituting equation(14) in equation(16) we get : 
 
 
❏ If the particle moves in a field whose potential energy is V, then 

         E = K.E + P.E.  = T + V 
         T =  E - V  
            =  
          where E is the total energy. This is Schrödinger's equation for a 
          particle in one dimension. It is usually written as 
 
  
❏ In three dimensions this equation becomes: 

 
 

●  Interpretation of 𝜳 and Heisenberg's Uncertainty Principle : 
 
❏ In classical mechanics the square of wave amplitude associated         

with electromagnetic radiation is interpreted as a measure of the          
radiation intensity.This suggests that de Broglie waves are        
associated with electrons or any moving particle. 

❏ Let the solution of wave equation (20) be a function 𝜳 (x.y,z),            
called wave function. We may anticipate that some some         
physically observable property of the electron is connected to         
𝜳2 (x.y,z) or more generally 𝜳* (x.y,z).𝜳 (x.y,z) if 𝜳 is a complex             
wave function. 

❏ For a system having electrons there are two ways in which |𝜳2| or             
|𝜳*𝜳| can be interpreted. Either |𝜳2| may be regarded as a           
measure of the the density of electrons or |𝜳2|dr be interpreted as            
a measure of probability of finding the electrons in a small volume            
dr in a certain region between r and r + dr. 

❏ This implies that if we know 𝜳 exactly we cannot say precisely            
where the electrons can be found. This destroys the classical          
concept of a precise trajectory (ગિત પથ). 

❏ Let us consider an electron of mass me with momentum Px moving            
in a zero potential field along the x-direction only.The wave          
equation for such particle according to wave eq. Theory Is given           
by:  
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❏ The wave function 𝜳(x) is given by either exp (ikx) or exp (-ikx).             

We now ask whether the electron whose momentum is p x can be            
found. The answer is given by: 
         | 𝜳*(x) 𝜳(x) |   Which can be written as: 
   𝜳*(x) 𝜳(x)  =    exp (ikx)  exp (-ikx)  = 1 

❏ According to Born interpretation, this result implies that the         
probability of finding the electron in a region dx is situated. Thus            
quantum mechanics says that if any part of the space is inspected,            
the probability of finding the electron remains the same. In other           
words, if the momentum of a moving particle is precisely known, its            
position is totally uncertain. 

❏ In 1927 Heisenberg derived a famous principle : In classical          
mechanics one can simultaneously determine as many properties        
of a system of any particle as one wishes, to any degree of             
accuracy. This is not true in wave mechanics. 

❏ Suppose a tiny particle is at rest. We want to find its exact position              
by looking through a microscope. To see a particle we must hit the             
particle with photons. If the light has a wavelength 𝞴, we cannot            
expect to determine the position within a distance shorter than 𝞴           
because of diffraction. So 𝞴 is the order of the uncertainty in the             
measurement of position.  

❏ But a photon of wavelength c has a momentum | h/𝞴 | When a              
photon collides a particle it transfers this much momentum to the           
particle and the uncertainty in momentum is | h/𝞴 |. The product of             
the uncertainties of the position and momentum is 𝞴 (h/𝞴) = h. 

❏ According to more accurate treatment of Heisenberg, his principle          
states that : 
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If the momentum is known to lie within a range 𝚫px along, say, the              
x-axis then the position of the particle on this axis must be            
uncertain to an extent of 𝚫x  where 
 

 
❏ To accept the Born interpretation of the wave function. For this            

reason |𝜳2| or |𝜳*𝜳| may be called the probability function. Since           
the electron must be somewhere in space, the integration of |𝜳2|           
or |𝜳*𝜳| over all space must be unity, so that 

                           ∫ 𝜳*(r) 𝜳(r)  = 1 
       Such wave functions are said to be normalised. For every  
     system which is bound, every wave function must satisfy. 
 

●  Properties of 𝜳 
❏ The solution of Schrodinger wave equation gives several values of          

𝜳. It is not necessarily all of them that correspond to any physical             
or chemical reality. Such wave functions are therefore considered         
unacceptable. Acceptable wave functions are those which satisfy        
the following conditions: 

1. 𝜳 is single valued, i.e. for each value of the variables x, y, z,               
there is only one value of the function 𝜳. If one of the             
variables is an angle, say 𝜽, then it requires that 

                            𝜳 (𝜽) = 𝜳 (𝜽+ 2n𝞹)       where n is an integer. 
  

2. 𝜳 and its first derivative d𝜳/dx with respect to its variables           
are continuous, In other words, there must not exist any          
sudden changes in 𝜳 as its variables are changed. 

3. For boundary states 𝜳 must vanish at infinity. If 𝜳 be a             
complex function, then 𝜳*𝜳 must vanish at infinity. 

 
                  If above three conditions are satisfied the function 𝜳 is called 
                    well behaved wave function. 

● Operator concept in Quantum Chemistry : 
● First (basic) Postulate of quantum mechanics : 
❏ To every physically measurable or observable quantity like          

position, velocity, linear momentum, angular momentum, energy,       
etc. of a system there corresponds an operator in quantum          
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mechanics. This may be treated as one of the several basic           
postulates of quantum mechanics. 

❏ An operator is a symbol for a certain mathematical procedure          
which transforms one function into another. For example, the         
operator of evaluating the derivative with respect to r is          
represented by the symbol d/dr. When this operator is applied to           
the function r we obtain a new function as : 
 
 

❏ A list of typical examples of different mathematical operations         
along with the results of the operations on the function, x3 is given             
in Table. 

 
 

 
❏ (Operator) (function) = (Another function) 

Symbol of operator is :  
The function on which the operation is carried out is often called an             
operand.  
 

● Additional and Subtraction of Operators : 
New operators can be constructed by adding and subtracting          

operators.If A and B are two different operators, then new          
operators can be defined as : 

 
(A + B) f   =  Af  + Bf 

 
(A - B) f  =  Af - Bf 

Operation Operator Result of operation 
on x3 

Taking the square (  )2 x6 

Taking the square root √ x3/2 

Multiplication by a constant k  k kx3 

Differentiation with respect to x d/dx 3x2 

Integration with respect to x ∫( )dx x4/4+c 
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❏ where f is an operand. It is also true that 
 
A + B = B + A 

 
         A - B =  -B + A 
❏ Multiplication Operator : 
❏ The consecutive operations with two or more operators on a          

function may be called the multiplication of operators. Let A and B            
represent two different operators and f, an operand. Then, the          
expression A B f means that the function f is first operated on with              
B to obtain a new function, f’ as 

B f  = f’ 
Then f’ is operated on by A to obtain the final function f" as 
Â f’  = f" 
So that 
Â  B f  = f” 

 
The order of application of operators is always from right to left as             
they are written. 

❏ If the same operator is applied several times in succession, it is            
written with a power. Thus 
ÂÂƒ  =  Â 2 f 

● Linear Operator : 
❏ If in operating on the sum of two functions an operator gives the             

same result as the sum of the operations on the two functions            
separately, then the operator is said to be linear. Thus the operator            
Â is linear if for any functions f and g we have : 

Â (f+g) = Âf + Âg 
And   Âcf  = cÂf     where c is a constant. 

 
The operation of taking square root is non-linear because 

√ f + g   ≠   √f + √g 
● Commutator : 
❏ Using any two operators Â and B, it is possible to construct a new              

operator AB - BA, called the commutator of the two operators Â            
and B usually written as [A, B]. If these two operators commute            
then    [A, B]  = ÂB - BÂ  = 0 
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❏ Thus the commutator means the multiplication with zero. Clearly,         

every operator commutes with itself or any power of it. Thus, for an             
operator Â, 

ÂÂ n - Â nÂ  = 0 
● Vector Operator : 
❏ Operators operating more than one variable are called vector         

operators. E.g. �/�x (differential operator) can operate on the         
function f(x, y, z) with variable x,y,z. An important group of           
operators are the vector operators. A vector operator ∇(del) is          
defined in Cartesian coordinates as : 

∇ = i �/�x + j �/�y + k �/�z 
where i, j, k are unit vectors along the x,y and z axes.             

Operating on a scalar function ⲫ, this operator generates a vector           
called the gradient of ⲫ. 

∇ⲫ = i �ⲫ/�x + j �ⲫ/�y + k �ⲫ/�z 
● Laplacian : 
❏  In the quantum mechanics  the Laplacian operator ∇2 defined as 

 ∇2 =   �2/�x 2 +  �3/�y 2 +  �2/�z2 

 

● Second Postulate of Quantum Mechanics : 
● Another basic postulate or Law of Quantum Mechanics : 
❏ “The only possible values that can be observed of a physical           

properties like angular momentum, energy etc. of a system are the           
eigenvalue 𝛌, in the operator system. 

i.e. Â 𝜳 = 𝛌𝜳  ……………………………………(i) 
Where, Â is the operator for physical quantity and 𝜳 is well            
behaved eigen wave function. 
There are two types of operators that obey the eigen value           
relationship. 

➢ Hermitian operator: 
An operator Â is said to be Hermitian if, 

∫𝜳1*.(Â 𝜳2) ��  =   ∫(Â 𝜳1)*.𝜳2 ��………………….(ii) 
 
Where 𝜳1 and 𝜳2 are eigenfunctions of the operator Â.  
Equation (ii) is a mathematical form of “turn-over rule”. 
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* indicates the complex conjugate of the quantity immediately to its           
left. The hermitian operator is linear and it has real eigenvalue. 
If Â is hermitian operator operating on eigenfunction 𝜳, it gives           
eigenvalue ‘a’ then  

Â 𝜳   =  a 𝜳…………………………………(iii) 
Multiplying both side of equation (iii) with 𝜳* and integrating over           
all space, we get 

∫𝜳* Â 𝜳 ��  =   a ∫𝜳* 𝜳 �� ………………...(iv) 
Taking the complex conjugate of every quantity in equation (3), 

Â * 𝜳*   =  a * 𝜳*  ……………………………....(v) 
and then multiplying both sides of eq.(v) with 𝜳 and integrating           
over the space,  

∫𝜳 Â * 𝜳* ��  =   a * ∫𝜳* 𝜳 ��…………….….(vi) 
 

The left hand side of eq. (iv) and (vi) are equal according to the              
definition of a hermitian operator, so that 

 a ∫𝜳* 𝜳 ��  =   a * ∫𝜳* 𝜳 ��………………..(vii) 
 

In other words, a = a * which is true only if a is real. This guarantees                
that any physical quantity represented by a hermitian operator is          
observable and physically measurable. 

➢ Unitary operator : 
A linear operator Û  is said to be  unitary operator 

∫𝜳1* U -1 𝜳2 ��  =   ∫𝜳2 Û * 𝜳1* ��…………..(viii) 
 

where the operator U -1 is the inverse of  Û such that 
Û -1 Û = Û Û -1 = 1 and , 𝜳1 and 𝜳2 are any two eigenfunctions of Û                   

and the asterisk stands for the complex conjugate quantity.  
Consider the equation : 

Û 𝜳 = 𝛌 𝜳 ………………………………..(ix) 
where 𝛌 is the eigenvalue. Then 

 Û -1  Û 𝜳 = 𝜳 = 𝛌 Û -1 𝜳 ………………….(x) 
Or       Û -1 𝜳 = 𝛌-1 𝜳 ……………………………(xi) 
Inverse operator U-' has the same eigenfunction as U but with           
reciprocal cigen value. Multiplying both sides of Eq. (2.26) with y           
and integrating over all space 

∫𝜳* Û -1 𝜳 ��   =   𝛌-1 ∫𝜳* 𝜳 ��…………..(xii) 
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Taking the complex conjugate of Eq. (ix) 
Û * 𝜳*  =  𝛌* 𝜳*......................................(xiii) 

Then,  ∫𝜳  Û * 𝜳* ��   =   𝛌* ∫𝜳* 𝜳 ��……….(xiv) 
R.H.S. of eq. (xii) and (xiv) are equal, so that 

𝛌-1   =  𝛌*      or    𝛌*𝛌   =  1 ……….…….(xv) 
Thus eigenvalues of an unitary operator have modulus one. 
 

● Setting up of Operators for Different Observables : 
 

It has been already mentioned that every dynamical variable         
is assigned a linear operator. According to classical mechanics,         
most dynamical variables may be expressed in terms of the          
position and momentum coordinates such as x, y, z, p x, p y, or p z.             
The rule for setting up their quantum mechanical operators is          
simply to take the classical expressions and replace x, y, z, p x, p y,             
and p z by the corresponding operators. Operators corresponding to         
positions along x, y and z axes are simply the multiplication by the             
variable itself. Operators for linear momenta may be found from          
the following considerations. 

A beam of electrons travelling along the x-direction can be          
treated as a wave propagating along the x-axis. Taking these          
waves to be sinusoidal, the wave function may be written as : 

𝜳  =  A sin 2𝛑x / 𝛌……………………………(i) 
Where 𝛌 is the wavelength. An equivalent form for the          

time-independent wave is : 
𝜳  =  C exp [ ± sin 2𝛑ix / 𝛌 ] ……………….(ii) 

 
 
 
 

Using de Broglie's relationship, i.e. 𝛌 = h/Px , one may write 
 
 

Therefore, the operator corresponding to the linear       
momentum in the x-direction is written as : 
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Similarly for    and    one can write 
 
 
 
That the operator, say p x, is hermitian is shown as follows : 
 
 
 
 
The first term on the right hand side is zero since both 𝜳1 and 𝜳2               
vanish at infinity. The second term on the right hand side can be             
written as : 
 
 
 
Thus, the linear momentum operator is hermitian, hence linear         
momentum is observable. 

The classical expression for the total energy of a single          
particle of mass m is called the hamiltonian, usually denoted by H            
and is given by : 
 
 
 
 
 
 
where v is the linear velocity, P the momentum, and V the potential             
energy of the particle. Written in terms of the components of the            
linear momentum p, H becomes : 

 
 
The operator, say is taken to mean that the corresponding          
operation   , is to be repeated twice, so that ; 
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Substituting eq.(ix) in eq.(viii) ; 
 
 
 
which can be proved to be hermitian and linear. If there are several             
particles then, 
 
 
 
where mi, is the mass of the ith particle and ∇2i is Laplacian             
operator containing  the coordinates of  ith particle. 

Another important dynamical variable is the angular       
momentum. For a single particle moving around a fixed point, the           
angular momentum L is given by the vector product of r  and p as : 

L  =  r x p …………………………….(xii) 
where r is the radius vector from a fixed point and p , the             

linear momentum vector. Both the vectors r and p can be written in             
terms of their components as : 

r =  ix + jy + kz 
p = ip x + jp y + kp z……….…………..(xiii) 

where i, j and k are unit vectors along x, y and z axes.              
Therefore, in terms of the components of r and p , the angular             
momentum, L is  

L = i(yp z - zp y) + j(zp x - xp z) + k(xp y - yp x)..........(xiv) 
 
Replacing the p's by the corresponding quantum mechanical        
operators, the operators for the components of angular momentum         
are as follows: 
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The total angular momentum is obviously given by 

L = iLx + jLy + kLz ……………………….(xvi) 
However, more important in quantum mechanics, is the scalar product of           
L with itself, 

LL  =  L2  =  L2x + L2y + L2z 
The angular momentum operators are usually expressed in spherical         
polar coordinates.  

 
 
 
 
 
 
 
 
 
 

Let us consider the component of angular momentum about z-axis.          
That this operator is hermitian can be shown as follows : 

 
 
 

Since the functions 𝜳1(𝝓) & 𝜳2(𝝓) must be single valued i.e. for any (𝝓)  
𝜳1(𝝓) = 𝜳 (2𝛑 + 𝝓)......................................(xx) 

the first term on the right hand side of Eq. (xx) must vanish. Therefore,              
Eq. (xx) can be written as : 
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Because of the equivalence of Lx. Ly, and Lz an operator           
corresponding to any component of angular momentum is        
hermitian. So must also be hermitian. This shows that not only           
any component of angular momentum about any axis but also total           
angular momentum in a system is observable from the quantum          
mechanical view point. 

 
● Eigenvalues of      : 

In accordance with the basic postulate embodied in 
Eq.Â 𝜳 = 𝛌𝜳 the possible values of the component of angular            

momentum about z-axis, the axis of rotation, are given by the           
solution of equation 
 
 
 
 
 
 
 
 
 
Since the function 𝜳 must be single valued, it follows from Eq. (xx)             
that : 
 
 
 
 

exp(ik 𝝓) =  exp( ik [𝝓 + 2𝛑])  Where  k = 2𝛑λ / h 
Or   exp(2𝛑ik)  =  1 
In other word  cos(2𝛑k) + i sin(2𝛑k)  =  1 
which is possible only if 

k = 0, ±1, ±2, ±3,.............±n 
Or 𝛌 must be either zero or integral multiple of h/2𝛑. This             

results in exactly what Bohr postulates about angular momentum         
of an electron in an atom. In other words, the component of            
angular momentum about any axis forms a discrete        
eigenspectrum. On the other hand, it can be shown that in the            
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absence of any restrictions, the component of linear momentum         
along any axis forms a continuous eigenspectrum. 

 
●  Third Postulate of Quantum Mechanics : 

According to the second postulate given by Â 𝜳 = 𝛌𝜳 the            
given eigenvalue 𝛌 which a measurement of an observable         
characterised by an operator Â  may be written as : 
 
 

But this form of expression is not used in quantum          
mechanics, because it varies from place to place and cannot be           
equated to a constant 𝛌. If, both the numerator and the           
denominator on the right hand side of above Eq. with 𝜳* and            
integrated over the entire space, we get : 

∫𝜳* Â 𝜳 �� / ∫𝜳* 𝜳 ��   no longer becomes a function of the 
coordinates (x,y,z). Thus it can be equal to the average value of            
the constant 𝛌. 

 The third postulate may then be stated as follows: 
“When a great many measurements of any observable         

represented by an operator Â are made on a system characterised           
by a function 𝜳, the average result obtained is given by : 
 
 
 
 

●  Fourth Postulate of Quantum Mechanics : 
 
The fourth postulate may be stated as follows:  
The time development of a wave function is given by : 
 
                                                              …………..(i) 
 
which is Schrödinger's equation where Ĥ is the hamiltonian         
operator. If we substitute  Ĥ  =  
in Eq. (i)  
 
                                                                …………(ii) 
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The wave function 𝜳 is obviously a function of the space           
coordinates of a particle, i.e. x, y, z and time t. Using a collective              
symbol r for the space coordinates, x, y, z, Eq. (ii) can also be              
written as : 
 

                                                                                     ………(iii) 
 

Where V the potential independent of time. Such an equation can           
be solved easily by assuming the separation of variables. Thus,          
the wave function 𝜳 may be factored into two functions, one           
depending only on r and the other on t. 

𝜳 (r, t)    =  𝜳 (r) . 𝜳’ (t) ……………………………(iv) 
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● Wave mechanics of some simple system with constant        

potential energy : 
 

As an example, we consider the exact solution of         
Schrödinger's equation for a system of an electron confined in a           
box in which the potential energy is either zero or constant and            
infinite everywhere else outside the box. The mathematics is         
simple for this system but the results illustrate some important          
properties of quantum mechanical systems, such as quantisation        
of energy, quantum numbers, zero point energy, etc. In fact, this           
system provides the basis of the free electron approximation to          
molecular orbitals which we shall deal with in a later chapter. 
 

●  One Dimensional Box : 
Suppose an electron of mass me is constrained to move in           

the x-direction from x = 0 to x = a . Outside this region(0 to a ) the                
potential energy, V is taken to be infinite, and within this region it is              
zero (because one electron possess wave nature so it can move).  
 
 
 
 
 
 
 
 
 
 
Outside the box the Schrödinger equation is, 
 

 
 
This equation is satisfied if 𝜳 is zero at all points outside the box.              
In other words electron cannot be found at all outside the box. 
 
 

O

h
X

11 0 VIA
VID

x _O F X _CL
1 D Box

d24
1
872M
hz
ECE A 4 0 C17



Inside the box the wave equation is, 
 
 
 
 
Equation (2) may be written in the operator form 
 
 
 
According to the third postulates of quantum mechanics, the mean          
value of E is observable and independent of the coordinate of the            
electron. Now we refer to E as the mean value of energy and             
assume, 
 

 
 
Where k 2 is a constant independent of x. Equation (2) can be            
written as : 
 
 
 
The solution of equation (4) is, 

𝜳 = C cos kx + D sin kx ……………………(5) 
In order to be a well-behaved wave function 𝜳 must be a            
continuous function of x in between x = 0 to x = a. While outside               
this 𝜳 must be  zero. 
From the boundary conditions, 
(i) 𝜳 = 0, at x = 0  hence from eq.(5) C = 0 and  
(ii) 𝜳 = 0  at x = a, we have 

 D sin ka = 0  ……………………………..(6) 
    Or sin ka = 0   or  ka = n𝛑  ………...……….(7) 

n = 1,2,3,4,..... 
where n is called a quantum number which is either zero or a             
positive integer. Thus, the permitted solutions are 
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From Eqs (3) and (7), E is given as,  
 
 
 
If the potential energy inside the box is not zero but constant equal             
to say, V , then the energy spectrum is given by 
 
 
 
Although the value zero for n is permitted it is not acceptable            
because the function 𝜳n of Eq.(5) becomes zero; but an electron is            
assumed to be always present inside the box. Therefore, the          
lowest kinetic energy, called the zero-point energy, of an electron          
in a box is given by [substitute n = 1 in Eq. (9)]. 
 
 
 

This shows that the electron inside the box is not at rest even             
at 0 K. Therefore, the position of the electron cannot be precisely            
known. Since only the mean value of the kinetic energy is known,            
the momentum of the electron is also not precisely known. The           
occurrence of the zero-point energy is therefore in accordance with          
the Heisenberg uncertainty principle. 

If the walls of the box are removed and an electron is free to              
move without any restriction in a field whose potential energy may           
be assumed to be zero and in the eq. (2) and (5) C,D & k 2 have                
any value, then the energy given by 
 
 
This energy is not quantised in this case. Thus, when an electron            
is bound in a system it has quantised energy levels given by Eq.             
(9) or (10) and it leads to a discrete spectrum. On the other hand,              
a free electron moving without any restriction has the continuous          
energy spectrum. This qualitatively explains the occurrence of con         
tinuum in the atomic or molecular spectra on ionisation because an           
electron lost by an atom or molecule is free to move without any             
restriction. 
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●  Normalisation and Orthogonality : 
 

The wave functions for the various states of an electron in a box             
are given by Eq. (8). The probability distribution is 
 
 
The integral of this wave function over the entire space in the box             
must be equal to unity because there is only one electron and at all              
times it is somewhere in the box Therefore 
 
 
 
 
 
 
 
 
 
 
 
Thus, the normalised wave function of an electron in a          
one-dimensional box is given by 
 
 
 
 

● Orthogonality : 
Consider the normalised wave functions 𝜳n and 𝜳n’ corresponding         
to two different states of an electron in a box. It is found that for  

n ≠ n’ 
 
 
The wave functions for different states of this system are thus           
orthogonal. This can be shown as follows: 
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Since the hamiltonian for an electron in a box is a hermitian            
operator, the wave function 𝜳n and 𝜳n’ corresponding to two          
different states should be orthogonal. 

 
●  Characteristics of the Wave Functions : 

A few energy levels and the corresponding wave functions are          
shown graphically in figure. Imagine a one-dimensional mirror        
which is parallel to the walls of the box and situated at the centre              
of the box as shown by the dotted line in figure. It should be noted               
that the wave functions are alternately symmetrical and        
antisymmetrical with respect to reflection from such a mirror. 
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Besides the points on the walls of the box, there are points inside             
the box where the wave function is zero. These points are called            
nodes. It is evident from the figure that as the quantum number n             
increases, the number of nodes on the wave increases. For          
example, the state whose wave function is 𝜳n has (n - 1) nodes             
inside the box. This type of behaviour is general for all systems.            
Increasing the number of nodes decreases the wavelength, which         
corresponds to increasing the kinetic energy. 
 
 
 


